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Abstract Perturbation theory based model can be used to locate the quasi-degeneracy
in an arbitrary double well potential. In this work, unconstrained optimisation has
been done using Simulated Annealing to calculate the energy spectrum of double
well potential. Using this calculation the author has studied the effect of a Gaussian
perturbation on single and double well potential. A comparative study of quartic double
well potential and Gaussian double well potential has also been done on the basis
of chemical and statistical point of view. The efficiency of this method is notable.
Numerical calculation shows that the proposed method can give extremely accurate
results for symmetric double well potentials.

Keywords Unconstrained optimisation · Simulated annealing · Symmetric double
well potential · Gaussian perturbation · Specific heat

1 Introduction

The Rayleigh–Ritz variation method lies at the heart of quantum chemistry. For a given
Hamiltonian H, this variation method of obtaining bound, approximate, quantum sta-
tionary states by minimizing the Rayleigh quotient (RQ)[1] applies, in general, to the
ground one. At best, the methodology can be extended to encompass states that are
lowest in energies of a specific symmetry, provided the trial state incorporates the right
symmetry information. This factor restricts severely the applicability of the energy-
minimum principle. In case of constrained variation one chooses a suitable set of states
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{θi } with gradually increasing energies to meet the conditions (i) 〈θi | θk〉 = 0and (ii)
〈θi | H |θk〉 = 0, for i = 0, 1, 2, . . . k − 1, k > i . Then the average energy of state θk

will be an upper bound to the true one [2–4]. In case of simple systems, it is notable
that the crux of the problem lies in our lack of knowledge about the precise positions of
nodes of excited-state wave functions [5]. Indeed, if we take a trial function with one
or more variable nodal positions, it would turn out that an unconstrained minimization
of energy is achieved only by placing the nodes farther beyond the classical turning
points, thus getting closer and closer to the actual ground state. In other words, had
the nodal positions been exactly known beforehand, one could use the said princi-
ple for approximate calculations of properties of excited states in a general manner.
Thus, an unconstrained minimization of the RQ cannot be pursued to get excited bound
states. Nodal position can be considered as parameter if one chooses to optimise newly
designed objective function other than energy. In this work, it is shown if one chose
such functions, then there is no such necessity of considering node as parameter [6].
Thus choice of function plays the vital role in calculations. In case of double well
potential de to quasi degeneracy [7] this choice becomes even crucial.

Double-well (DW) potential models have been employed in a wide range of fields
including physics, chemistry and biology (for a recent review on DW systems [8]). We
may classify quantum DW models into three categories: exactly solvable, quasi-exactly
solvable, and approximately solvable models [9]. In the exactly solvable model, we
can determine the whole spectrum analytically by a finite number of algebraic steps. In
contrast, we can determine a part of the whole spectrum in the quasi-exactly solvable
model. In other models, eigenvalues are obtainable only by approximate analytical or
numerical method.

Examples of exactly solvable models include the double square-well potential and
the Manning potential [10]. The Razavy potential [11,12] expressed by hyperbolic
functions belongs to the quasi-exactly solvable models. In this paper, we pay our atten-
tion to two types of approximately solvable models with a quartic potential[13] and a
quadratic potential perturbed by a Gaussian barrier [14,15] model. These models have
been commonly adopted for studies of tunneling and stochastic resonance in DW sys-
tems. In this work, the author has initially applied Simulated Annealing technique using
a newly designed function to calculate the energy spectrum of double well potential
and then made a comparison between the quartic and Gaussian double well potential.
The objective is to see whether both double well potential represents same chemi-
cal environment, because the vibration modes, however, may have double or multiple
potential minima, such as inversion, ring-puckering, large-amplitude bending, and tor-
sional vibrations [16]. A single harmonic oscillator is unable to describe these types
of motion, and a number of approaches have been proposed to construct double- or
multiple-well potential surfaces. Prominent approaches include the quadratic potential
perturbed by a Gaussian function barrier [17], the quartic–quadratic potential [18,19],
the hyperbolic secant functions [20] and the linear combination of cosine functions
etc. It is, however, curious that studies on the effect of Gaussian perturbation on quartic
double well potential. Specific heats of symmetric double-well systems at very low
temperatures have the Schottky-type anomaly [21], which is rooted to a small energy
gap in low-lying two-level eigenstates induced by a tunneling through the potential
barrier. Whether, this type of perturbation removes such defects.

123



J Math Chem (2015) 53:137–150 139

2 Methods

V (x) = αx4 (1)

V1(x) = V (x)− βx2 (2)

V2(x) = V (x)+ β1 exp(−ax2) (3)

V3(x) = V1(x)− β2 exp(−ax2) (4)

Here, an attractive quadratic and a repulsive Gaussian perturbation is applied to a
quartic oscillator potential [(Eq. (1)] to construct double well potentials V1(x), V2(x).
We apply Simulated Annealing technique using newly designed optimisable parameter
to optimise the first twenty energy states of these potentials. The increase of the strength
of the quadratic perturbation increases the quasi degeneracy. Thus, it has been studied
how the energy gap between first two energy levels of Gaussian double well potential
changes with the increasing strength of the Gaussian term. Then, we apply Gaussian
perturbation on quartic double well potential to see how it affects the energy levels of
such potentials. The formula used for optimisation is as follows

Time independent Schrödinger equation

Ĥψn = Enψn

(T̂ + V̂ )ψn = Enψn

Now, if the equation is left multiplied by T̂ and consider the expectation value
ΔT 2

n = 〈T 〉n 〈V 〉n − 〈T V 〉n

Similarly, if the equation is left multiplied by V̂ and consider the expectation value
ΔV 2

n = 〈T 〉n 〈V 〉n − 〈V T 〉n
Then from Hyper-Virial Theorem 〈[T, V ]〉n = 0

〈T V 〉n = 〈V T 〉n

thus,

ΔT 2
n = ΔV 2

n = 〈T 〉n 〈V 〉n − 〈T V 〉n (5)

This equation is the master equation in both the formulation. Again, this equation
is true for the Systems obeying Classical Mechanics

ΔT 2ΔV 2 = 〈T 〉 〈V 〉 − 〈T V 〉 (5a)

These two equations tells that this is a property of both quantum and classical
systems.

Now, obeying Eq. (1) and using Schwarz’s Inequality, it can be written for bound
stationary state that,

ΔT 2
n ΔV 2

n =
∣
∣
∣〈T V 〉2

n − 〈T 〉n 〈V 〉n

∣
∣
∣

2
(6)
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But, as the aim is to find an objective function to support optimisation in excited
non-linear variational description, so, main focus is on the approximate solution of
excited state.

Thus, first it is being proved that 〈[T, V ]〉 = 0 for any real/imaginary wave function.
Then again from Schwarz’s Inequality it can be written that

ΔT 2
n ΔV 2

n ≥
∣
∣
∣〈T V 〉2

n − 〈T 〉n 〈V 〉n

∣
∣
∣

2
(7)

Now, concentrating on Eqs. (6) and (7) it is quite clear that equality holds for stationary
state where as inequality for approximate cases. Now, whether there is any of the
approximate state where this inequality becomes equality. This can be explored by the
concept of linear dependence

(T − 〈T 〉) ψ = α (V − 〈V 〉) ψ (8)

Thus, by mathematical description equality holds for any value of α.
If, α = −1 then Eq. (8) is reduced to time independent Schrödinger equation and

thus it is clear that,

α2 = 〈T V 〉ΔT 2

〈V T 〉ΔV 2 = ΔT 2

ΔV 2 = 1

But, here if α = ±1,

ΔT 2 = ΔV 2

Thus, Eq. (5) is necessary but not sufficient condition for bound stationary states.
Again there is another necessary condition for bound stationary states which is

Virial Theorem and is true for systems obeying Quantum or Classical mechanics.

2 〈T 〉 =
〈

x
∂V

∂x

〉

(9)

Now, combining the above said conditions Eqs. (5) and (9) for bound stationary
states it is clear,

i)
∣
∣
∣
ΔT 2

ΔV 2 − 1
∣
∣
∣ +

∣
∣
∣
∣
∣

2〈T 〉
〈

x ∂V
∂x

〉 − 1

∣
∣
∣
∣
∣
= 0

ii)

∣
∣
∣
∣

(〈

T 2
〉−〈T 〉2)

(〈V 2〉−〈V 〉2) − 1

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

2〈T 〉
〈

x ∂V
∂x

〉 − 1

∣
∣
∣
∣
∣
= 0

iii)
∣
∣
∣

ΔT 2

(〈T 〉〈V 〉−〈T V 〉) − 1
∣
∣
∣ +

∣
∣
∣
∣
∣

2〈T 〉
〈

x ∂V
∂x

〉 − 1

∣
∣
∣
∣
∣
= 0

iv)
∣
∣
∣

ΔV 2

(〈T 〉〈V 〉−〈T V 〉) − 1
∣
∣
∣ +

∣
∣
∣
∣
∣

2〈T 〉
〈

x ∂V
∂x

〉 − 1

∣
∣
∣
∣
∣
= 0
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v)
∣
∣
∣

ΔT 2ΔV 2

(〈T 〉〈V 〉−〈T V 〉)2 − 1
∣
∣
∣ +

∣
∣
∣
∣
∣

2〈T 〉
〈

x ∂V
∂x

〉 − 1

∣
∣
∣
∣
∣
= 0

These five conditions are necessary and sufficient condition for bound stationary
states. Because these two conditions (Eq. (5) and Virial Theorem) are simultaneously
true only in case of bound stationary states. Left hand side of condition (i)–(v) (P) will
serve as objective function instead of Eq. (5) in excited state non-linear optimisation
scheme. These parameters are previously used to optimise the first few excited state
of a quartic oscillator potential.

3 Simulated annealing

Simulated Annealing (SA) [22–25] is a technique borrows its working principle from
the method of annealing in which a moisen melt of metals is cooled very slowly
reaches the thermodynamic minimum energy state. The working of SA is based on
the metropolis sampling scheme. We ascribe a temperature T to the system. In a move
we see if the objective function decreases its value or not. If it does, we accept new
set ofri j ’s as a better structure. If not, then we subject the system to the metropolis
sampling test. We calculate the quantity exp (−ΔF/kT )where ΔF is the change in
the value of the objective function in two steps. If exp (−ΔF/kT ) is greater than
a random number r (between 0 and 1) we accept the move, as it is more probable
than any random event. This makes SA a potent optimizer as during the search it
might happen that in one move the system might move to a higher parameter but this
higher parameter point might be a starting point for achieving a better structure. If T
is kept large, the system will have large thermal fluctuations and most moves will be
accepted which is necessary in the initial part of the search. As the search proceeds T
is decreased by assigning an optimisation schedule and when T → 0 the system finds
out the near-exact result we are looking for.

Success of non-linear variational calculation depends on the choice of trial
stateφ̃n .Because better the choice of trial state better will be the convergence of the
results more over as here the main focus is on excited state optimisation.

Thus we chose
For even parity states,

ψn =
N

∑

i

ci exp(−ai x2) (10a)

For odd parity states,

ψn = x
N

∑

i

ci exp(−ai x2) (10b)

For our calculation we restrict ourselves N = 50. Here, ci , ai are all nonlinear
parameters.
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Table 1 Variational upper
bounds to energies for even and
odd states of the potential V1(x)
and V2(x)

N V1(x) (α = 1β = 15) V2(x) (α = 1β1 = 15 a = 5.12)

0 5.408612715617884 4.64709163217703036

1 5.408612715812822 5.00275447374390403

2 15.935280110095241 11.8324821016275782

3 15.935280164925373 13.5507701875245240

4 25.980542292878151 19.4671245082559460

5 25.980548994652235 23.2744169222716302

6 35.460582511313731 28.8720519603231232

7 35.461040958641405 34.0426382323892440

8 44.227982895557813 39.8898324747024448

9 44.246515323743405 45.7930195265074502

10 51.809663901638092 52.0297189016040278

11 52.204321634814164 58.4279423456971259

12 57.308511213327322 65.0520800869662423

13 59.706475307472491 71.8492500979871950

14 63.756351297416089 78.8302756099485294

15 67.806026751651256 85.9752097049294548

16 72.255023529729055 93.2820030937900811

17 76.946407586432105 100.740671073241785

18 81.874398352572673 108.346617326538122

19 87.014858449597927 116.093385141089144

Here, upper-bound property of those states is not guaranteed. Here, also the opti-
misation using the newly formulated properties (i-v) doesn’t guarantee upper-bound
character but better the trial state closure will be the results. Among all those objective
functions, function (iv) is most easy to use as it contains only one operator related to
kinetic energy.

4 Optimisation of energy states

The potentials chosen for study are

V1(x) = αx4 − βx2

V2(x) = αx4 + β1 exp(−ax2)

The recipe is to optimise the energy states adopting Simulated Annealing tech-
nique using the newly designed function as the objective function for optimisation.
We optimised first twenty energy states of both potential V1(x) (α = 1β = 15)and
V2(x) (α = 1β1 = 15a = 5.12)

Optimised energies are given in Table 1 for both the potentials. Initially we start
with the trial function [Eq. (10a)] and minimise P4 for ground state of potentials
V1(x), V2(x). Then apply Eq. (10b) to minimise first excited state then continued these
calculations upto n = 19. In each of the optimisation we have not used orthogonality
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Fig. 1 Plot of potential V1 at different β values

constraints. It is quite clear from Table 1 that the method we have employed for the
calculation of energies of these potentials is appreciably successful. In this calculation
we restrict ourselves to N = 50. Previously this newly designed parameter was used to
optimise the energy states of a quartic oscillator potential with node as parameter 6.
In this calculation nodal position has not been used as optimisable parameter. Now,
we need not require the information of the nodal position to optimise the excited
quantum state in unconstrained variation. One only needs to choose a proper trial
function. Particularly work using non-linear unconstrained variation is rewarding in
pathological cases where choice of a suitable basis set with properties demanded by
the potential is lacking.

Then, one is forced to opt for nonlinear variations. Even, this method can also be
employed in calculating excited state energies of 2D and 3D potentials. In general,
therefore, this example, including some stringent tests of goodness of the quality
of approximate eigenstates obtained via the present recipe, point to the success of
this property dependent variation method. Keeping in mind that here used hundred-
parameter function to construct all the states tabulated here, this results look quite
satisfactory. Surely, a more flexible trial function would have performed much better.

5 Comparative study of quartic double well potential and Gaussian double well
potential

In case of potential V1(x) with increase of βvalue the area of the barrier increases,
whereas, classical boundary increases. This can easily be explained by Fig. 1. But for
potential V2(x), barrier area depends on β1, a. First of all, it has been seen that with
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Fig. 2 Plot of energy difference relative to the unperturbed potential between first two energy states of
potential V2(x) at β1 = 15 with varying strength (a) of the Gaussian term

increase of β1 energy gay between the pair of states decreases. But increases of ‘a’
does not always increase the quasi degeneracy of system. It is clear from Table 2 and
Fig. 2 that with increase of β1 value quasi degeneracy increases. But, in case of ‘a’,
there is an optimum value for which quasi degeneracy is maximum. Any deviation
from that point will also increase the energy gap between the successive pair of states.
This concludes that both the double well potentials do not lead to same chemical
environment. In, Table 1,
β = β1 but extent of quasi degeneracy is more in case of potential V1(x). Thus,

quartic double well potential is the model for vibrational mode of a stronger bond,
where Gaussian double well potential is the model for vibrational mode of a relatively
weaker bond. Because, the vibration modes, however, may have double or multiple
potential minima, such as inversion, ring-puckering, large-amplitude bending, and
torsional vibrations and these phenomena occurs for molecules having strong bond.
Thus, for these types of molecules stronger the bond more will be quasi degeneracy in
the in the vibrational modes of the molecule. For, example NH3 has umbrella rotation
but PH3 does not. Because of the strength of N − H is more than P − H .

6 Effect of Gaussian perturbation on quartic double well potential

Now, if one applies Gaussian perturbation then the potential will have the form

V3(x) = V1 − β2 exp(−ax2)
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A Gaussian perturbation is applied to a Quartic Double well potential. The calcu-
lation is done for different β2 using a series of ‘a’ values. Table 3, 4 and 5 show the
calculation.

Initially for β2 = 5.0 (Table 3) weak perturbation is applied. It is clear that; extent
of quasi degeneracy is same for both V1andV3 only some dispersion in the higher
energy states. But, in case of stronger perturbation (Tables 4, 5) β2 = 28.0 and
β2 = 56.250 results are different. It is clearly seen from the result that effect of this
Gaussian perturbation is more on higher energy state than lower states. In case of
higher strength of Gaussian, with increase of ‘a’ values, quasi degeneracy in higher
energy pair is removed and a new pair is generated. This, observation is clearly seen in
Table 5. The number of these accidental pair increases with higher ‘a’ values. Usually,
lower state in the quasi degenerate pair is an even parity state but here the lower state
in the pair is an odd parity state thus the order is reversed, this is indeed an interesting
result due to extra delocalisation of the higher even parity states. Also, in first column
of Table 5. quasi degeneracy is removed. It means that proper choice of perturbation
can remove the quasi degeneracy of the systems.

Specific heats of symmetric double-well systems at very low temperatures have the
Schottky-type anomaly, which is rooted to a small energy gap in low-lying two-level
eigenstates induced by a tunnelling through the potential barrier. Here, it can be con-
cluded from the energy spectrum that as the nature of the spectrum is almost same for
low and moderate strength with the unperturbed potential, then, these type of poten-
tials also have Schottky-type anomaly in their specific heat at very low temperature. In
case of first column of Table 5 the quasi degeneracy is removed so it can be expected
that for this potential there will be no Schottky-type anomaly in very low temperature
specific heat [17]. Thus, one can hope that proper choice of Gaussian field can remove
the Schottky-type anomaly.

7 Conclusion

A methodology has been put forwarded for obtaining excited quantum stationary
states through an unconstrained minimization of the P4. The motivation is to derive and
extend the applicability of the property (mandatory condition in stationary states) based
optimisation method rather than RQ or least square minimisation method. The present
route will find a distinctive edge. Work along this direction is in progress. Property
minimization in excited-state calculations by using nonlinear variational trial wave
functions is the key point here. The problem of an a priori knowledge of nodal positions
is removed directly. Now, for this type of minimisation doesn’t require any additional
information of node or any special state dependent character. This minimisation is a
general scheme of optimisation of any trial states, particularly in respect of electronic
structure calculations.

As nonlinear variations are much more powerful than the linear ones, the endeavour
has been found to be rewarding even when one chooses a three-parameter wave func-
tion to simulate some fifth excited state. Result for the Hamiltonian is a clear case in
point. Thus, the kind of generality the present recipe provides is remarkable. And, this
is certainly a much more desirable extension in comparison with the sacrifice made of
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the upper bound nature of average energies that one obtains in linear variations. Hope,
further studies along this line may surely explain the utility of this type of variational
calculation.

Here, a comparative study of Quartic double well and Gaussian double well is done
on the basis of their chemical environment and it has been found that Quartic double
well potentials are model for vibrational mode of a stronger bond where Gaussian
double well potentials are for relatively weaker bonds. The author has also studied
the effect of Gaussian perturbation on a quartic double well potential and now can be
proposed that Schottky-type anomaly can be removed by using proper Gaussian field
in double well potential.
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